ISRAEL JOURNAL OF MATHEMATICS, Vol. 46, Nos. 1-2, 1983

LIKEABLE FUNCTIONS IN FINITE FIELDS

BY
STEPHEN D. COHEN

ABSTRACT
The concept of a likeable function over a finite field of order ¢ = p" was
introduced by W. Kantor [3] for the purpose of constructing certain interesting
translation planes of order ¢°. It is shown that when q is odd then, except for the
class shown by Kantor to occur in fields of characteristic 5, any other non-zero
likeable function can exist only if r >max (:Vp, 2).

1. Introduction

A function f:GF(q)— GF(q), where q = p’ is not a power of 3, is c'alled
likeable if (a) f is additive and (b) the equation

x*=xy’=3y*+yf(y)

over GF (q) has the unique solution (x, y) = (0,0). The concept was introduced
by W. Kantor [3], who showed that to each likeable function corresponds a
translation plane of order ¢ and kern GF(q). The translation planes so
contructed admit an abelian group of collineations having a point orbit of length
q° on the line at infinity but having only g elations. Furthermore, the planes
obtained by deriving the corresponding dual translation planes are aof
Lenz-Barlotti type II.1 and admit a collineation group sharply-transitive on the
affine points. For full details the reader is referred to [3].

Known examples of likeable functions are as follows (see [3], [1]).

(i) f is the zero function and g = —1 (mod 6). This yields the Walker
translation planes.

(i) f(y)=c’y +cy® and q =2" where r is odd, r =3 and ¢ € GF(2'). Here
the corresponding translation plane is the Betten plane.

(i) f(y)=ny’+n"'y and q =5 where r=2 and n is a non-square in
GF (57). We shall refer to these as Kantor’s functions.
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In fact, M. J. Ganley [2] has shown that, if q is even, then the examples of (ii)
are the only likeable functions. We therefore assume from now on that p > 3.
We show that other likeable functions, if they exist at all, are rare. In particular
they can occur only if r >max (3 Vp, 2).

We round off this introduction with some preliminaries. Observe that the
definition of a likeable function f can be recast as follows.

(a) f can be represented uniquely as a polynomial of degree p'~" of the form
Sishfx® (see [5])-

() F(y)=y 'f(y)—y’/12 is a non-square for all y# 0 in GF(q) (see [3]).

(We shall assume below that f has the form (a) and F(y) s given by (b).) In the
light of this formulation the following consequence of Weil’s theorem will clearly
be useful.

LEmMA. Let g(y) be a polynomial of degree d over GF (q) not identically of the
form ch*(y) (¢ € GF(q)). Suppose that d < \/21 Then g(y) is a square for some
non-zero y in GF (q).

ProOF. Let x denote the quadratic character in GF (q). Then the number of
non-zero y for which g(y) is a non-square is at most

ye;(q)x(g(y)) ' + 1)

={q+d-1)Vg  (see [4], p. 43)

b S a-xeomsia-1+

y
yEGF(q)

<q-1,
since d <\/:1 and ¢ >4.

2. Canonical extensions of a likeable function

A canonical extension of a function f defined over GF (q) by a polynomial of
degree < g —1 is a function over a proper finite extension of GF (q) defined by
the same polynomial. Clearly, the canonical estension of a Kantor likeable
function over GF (5") to GF (5") (where ¢ is odd) is a likeable function in GF (5").
We prove that no other non-zero likeable function has such a property.

THEOREM 1. Let f be a non-zero likeable function if GF (q) (q odd). Suppose
that f possesses a canonical extension which is also likeable. Then f is a Kantor
function.



Vol. 46, 1983 LIKEABLE FUNCTIONS 125

PrOOF. By the lemma F(y)= nh*(y) (identically), where h is some monic
polynomial and n some non-square in GF(q). Clearly, f cannot be a monomial
and so, taking the degree of F to be p* —1, we may write

F(y)=fo™ " +fy" "+ —my’,
where 0= j < k and f;f, #0. Now, if h(y) begins y*** "+ cy* +- - - (¢ #0), then,
of course,
h(y)=y" '+ 2cy @t 4

But, since p > 2, then3(p* — 1)+ u exceeds p’ — 1. We must therefore have j =0
and 3(p*“ — 1)+ u = 2 which can occur only if p“ =5 and u = 0. Thus g = 5" and

F(y)=fiy*+2y°+fo=n(y*+c);

whence f, = n and fof, = 1. This completes the proof.

3. Restrictions on r

THEOREM 2. Suppose that f is a non-zero likeable function which is not a
Kantor function over GF(p’) (p >3). Then r >max (3 Vp, 2).

PrOOF. Suppose first that r =2. Then F(y) has degree p—1< \/21 and the
result follows from the lemma and Theorem 1.

For a general r, select any 8 in GF (q) for which f(8)#0, put y = f(8)/6°> #0
and let s be the smallest divisor of r for which y EGF(p°). Let x be any
non-zero element of GF(p). Since f is additive then f(x0)=xf(6) and so
F(x8) = 6*(y — x*/12). Further, the norm of y —x*/12 from GF (p") to GF (p)
obviously takes the form (g(x*/12))" where

g ==Xy =) (¥" )

an irreducible polynomial of degree s over GF (p). Moreover, it is an elementary
fact that, if y — x*/12 is a non-square in GF (), then its norm is a non-square in
GF (p). Hence r/s is odd and g(x*/12), which has degree 2s, is a non-square in
GF (p) for all x#0. It follows from the lemma that 2r =) 25 > \/;)

ReMaRks. For a likeable function f, we cannot have f(6)/6° (# 0) in GF (p)
for any 6 in GF (q); otherwise we could take s = 1 in the above proof to yield a
contradiction. Again, if f(y)/y is constant for all y in GF (p*) where s |r, then
f(y) =S f.y” and the above argument implies that r >max (s Vp®, 2s)
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unless f is a Kantor function. It is my guess that no further likeable functions
remain to be discovered.
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